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The reovirus M1, L1, and L2 genes encode proteins found at each vertex of the viral core and are likely to
form a structural unit involved in RNA synthesis. Genetic analyses have implicated the M1 gene in viral RNA
synthesis and core nucleoside triphosphatase activity, but there have been no direct biochemical studies of m2
function. Here, we expressed m2 in vitro and assessed its RNA-binding activity. The expressed m2 binds both
poly(I-C)- and poly(U)-Sepharose, and binding activity is greater in Mn21 than in Mg21. Heterologous RNA
competes for m2 binding to reovirus RNA transcripts as effectively as homologous reovirus RNA does, pro-
viding no evidence for sequence-specific RNA binding by m2. Protein m2 is now the sixth reovirus protein
demonstrated to have RNA-binding activity.

Genetic analyses have demonstrated that the reovirus M1,
L1, and L2 genes are determinants of acute myocarditis in
mice (19, 20). These three genes encode core proteins forming
a structural unit at each vertex of the viral core (7, 9, 14). The
L2-encoded l2 protein is a guanylyltransferase (5, 13), and the
L1-encoded l3 protein has RNA polymerase activity (8, 23).
While genetic analyses have identified the M1 gene as a de-
terminant of reovirus RNA synthesis (6, 18, 28) and as a de-
terminant of nucleoside triphosphatase (NTPase) activity in
the viral core (15), there have been no direct biochemical stud-
ies of the function of the M1-encoded protein m2.

The 736-amino-acid sequence of protein m2 is well con-
served between reovirus serotypes 1 and 3 (27, 30). Upon
examination of the amino acid sequence, we noticed several
regions that contained an unusually high number of arginine
and lysine residues. Such basic regions are frequently asso-
ciated with RNA-binding activity (3, 4, 24); therefore, we
cloned and expressed the M1 gene and examined its capacity to
bind synthetic RNA analogs as well as single-stranded RNA
(ssRNA).

Reovirus protein m2 binds both dsRNA and ssRNA analogs.
High-fidelity reverse transcription-PCR (Vent polymerase; Pro-
mega, Madison, Wis.) was used to insert a copy of the M1 gene
(from reovirus strain 8B [21]) into pBluescript II (Stratagene,
La Jolla, Calif.), and in vitro transcripts were synthesized with
T7 RNA polymerase. M1 transcripts and control luciferase
mRNA were translated in rabbit reticulocyte lysates, and the
[35S]methionine-labeled proteins were precipitated with anti-
m2 antiserum, poly(U)-Sepharose, or poly(I-C)–Sepharose and
resolved by sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) (Fig. 1). In vitro translation of M1 tran-
scripts generated an 83-kDa protein, as expected for m2 (Fig.

1), that was immunoprecipitated by anti-m2 antiserum but not
by control antiserum (Fig. 1A). The lower-molecular-weight
products are routinely obtained in M1 translations (17, 31, 32).
The translated luciferase mRNA generated the expected
61-kDa protein (Fig. 1), which was not precipitated by anti-
m2 antiserum or control antiserum (Fig. 1A). m2 and luciferase
bound control Sepharose CL4B insignificantly (4% binding for
each [Fig. 1B]). m2, however, bound both poly(U)-Sepharose
and poly(I-C)–Sepharose (increased sevenfold and threefold,
respectively, relative to Sepharose CL4B binding), while lucif-
erase did not (no measurable increase). Thus, m2 binds both
ssRNA and double-stranded RNA (dsRNA) analogs.

Next, the effects of divalent cations on m2 binding to poly
(U)-Sepharose and poly(I-C)-Sepharose were examined (Fig.
2). In 5 mM Mn21, m2 bound significantly to both poly(U)
and poly(I-C)-Sepharose, while luciferase did not, and neither
bound the control Sepharose CL4B. However, in 5 mM Mg21,
m2 binding to poly(U)-Sepharose was reduced and binding to
poly(I-C)–Sepharose was eliminated, and similar results were
seen in the absence of divalent cations. Thus, m2 binding to
RNA analogs was optimal in Mn21. Similar results were
observed over a pH range of 6.8 to 8.0 (data not shown). The
observation that m2 bound RNA better in Mn21 than in Mg21

is consistent with evidence that in vitro poly(C)-dependent
poly(G) polymerase activity of purified reovirus protein l3
is higher in Mn21 than in Mg21 (23) and that m2 and l3
likely form a complex in the viral core (9) for viral RNA syn-
thesis.

Baculovirus-expressed m2 binds nucleic acid, with no evi-
dence for sequence-specific binding. To date, there has been
no evidence for sequence specificity in reovirus RNA-binding
proteins. To investigate this, m2 and control GUS protein were
expressed from recombinant baculoviruses as follows. Tricho-
plasma ni (insect) cells were infected with a recombinant bac-
ulovirus containing the reovirus M1 gene or control GUS gene,
and cell lysates were resolved by SDS-PAGE (Fig. 3A). Coo-
massie blue staining revealed unique bands at the expected
molecular weight for GUS (duplicates in lanes 2 and 3) and m2
(duplicates in lanes 4 and 5). In Western blots, anti-m2 anti-
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serum bound exclusively to the 83-kDa protein generated in
cells infected with the M1-containing baculovirus (Fig. 3B,
lanes 3 and 4).

Binding of m2 to specific RNA sequences was investigated as
follows. Baculovirus-expressed m2 and GUS were incubated with
anti-m2 antiserum and protein A-Sepharose. The antibody-
complexed protein was then incubated in 200 mM NaCl with
no further addition, with ssDNA (M13mp18; U.S. Biochemical
Corp., Cleveland, Ohio), or with the indicated quantity of un-
labeled (competitor) T7-generated ssRNA transcripts: reovi-
rus positive- or negative-strand S4 (18), positive-strand M1, or
control feline b-myosin. Triplicate samples were then incu-
bated with T7-generated 32P-labeled ssRNA transcripts as in-
dicated. Bound RNA was eluted, resolved by SDS-PAGE,
quantitated, and expressed as percent bound in the absence of
competitor (Fig. 4). Protein m2 bound reovirus ssRNA, and
while binding was inhibited by homologous ssRNA in a dose-
dependent manner, binding was also inhibited by heterologous
ssRNA (Fig. 4) (experiments with M1 32P-RNA). Further-
more, m2 bound myosin ssRNA, and binding to both reovirus
and myosin ssRNA was inhibited by up to 90% when excess
homologous ssRNA, heterologous ssRNA, or heterologous
ssDNA was added (Fig. 4). Thus, while m2 binds single-strand-
ed nucleic acid, the data provide no evidence for sequence-
specific binding. It remains possible that m2 in a complex with
other reovirus proteins recognizes specific reovirus sequences
for binding or that ssRNA with authentic termini are required
for sequence-specific binding (authentic reovirus transcripts
could not be synthesized at a high enough specific activity to be
tested). Sequence specificity for dsRNA binding was not ex-
amined (again, RNA could not be radiolabeled to a high
enough specific activity for testing).

The observation that m2 bound ssRNA at 200 mM NaCl
(Fig. 4), with no benefit when ionic strength was reduced (data
not shown), indicates the relative stability of m2 binding to
ssRNA. Like m2, several plant virus movement proteins bind to

ssRNAs at concentrations ranging from 100 to 200 mM NaCl
(2, 22). In contrast, the binding of bluetongue virus protein
NS2 to bluetongue virus ssRNA is severely reduced between
100 and 200 mM NaCl (25). Similarly, the NP protein of in-
fluenza virus, although critical for viral transcription and rep-

FIG. 1. m2 binds poly(U)-Sepharose and poly(I-C)–Sepharose. (A) Immunoprecipitations. T7-generated M1 transcripts and control luciferase mRNA (Promega)
were translated in rabbit reticulocyte lysates (Promega) containing [35S]Met, and the products were precleared with protein A-Sepharose CL4B (Ptein A-Seph) beads
(Pharmacia) that had been washed in TNET buffer (50 mM Tris [pH 8.0], 100 mM NaCl, 5 mM EDTA, 1% Triton X-100). Hyperimmune rabbit antiserum prepared
against a serotype 3 Dearing (T3D) m2-Trp-E fusion protein (32), cross-reactive with T1L-(or 8B)-m2, was incubated with washed protein A-Sepharose CL4B beads
and then resuspended in TNET buffer. Precleared supernatants were then incubated with complexed beads. After extensive washing in radioimmunoprecipitation assay
buffer (50 mM Tris [pH 8.0], 100 mM NaCl, 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS), bound protein was eluted by boiling in Laemmli sample buffer
(11). Eluted protein and total translated protein were resolved by electrophoresis on a 10% Laemmli SDS-polyacrylamide gel (11), fixed in 5% trichloroacetic acid,
dried, and exposed to film. Luc, luciferase; Ab, antibody. (B) RNA binding assays. Sepharose CL4B, poly(I-C)–Sepharose type 6, and poly(U)-Sepharose type 6
(Pharmacia, Piscataway, N.J.) were washed in RNA binding buffer (70 mM NaCl, 10 mM Tris [pH 7.4], 5 mM MnCl2, 1 mM dithiothreitol) and then resuspended in
the same buffer. Translated proteins were precleared in Sepharose CL4B, incubated with the indicated beads, and washed in RNA binding buffer. The same gel was
used as for panel A.

FIG. 2. Effects of divalent cations on m2 binding to poly(U)-Sepharose and
poly(I-C)–Sepharose. Sepharose CL4B (Seph4B), poly(U)-Sepharose, and poly
(I-C)–Sepharose were washed as for Fig. 1 RNA binding assays, except that
5 mM Mn21 was substituted for with 5 mM Mg21 or no divalent cation where
indicated. Translated products (as for Fig. 1) were precleared with Sepharose
CL4B and then incubated with the indicated beads as for Fig. 1 RNA binding
assays, except that all incubations and washes contained the indicated divalent
cation. Total translated product and triplicate samples (m2) or single samples
(luciferase [lucif]) bound to the indicated beads were resolved by SDS-PAGE
and scanned with a Packard instant imager. The manufacturer’s software was
used to select bands of the appropriate molecular weight for quantitation, and
the percent of protein bound was calculated relative to total translated m2 or
luciferase (mean 6 standard deviation).
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lication, binds ssRNA nonspecifically, and binding can be dis-
rupted at NaCl concentrations greater than 200 mM (26).

Protein m2 is now the 6th of 11 reovirus proteins to exhibit
RNA-binding activity. The five other reovirus proteins (s2, s3,
l1, sNS, and mNS) bind ssRNA, dsRNA, or both; however, no
studies have provided evidence for sequence-specific binding
(reviewed in reference 14). While m2 bound ssRNA, this bind-
ing was competed by ssDNA (Fig. 4). Replication of reovirus
and rotavirus (reviewed in references 10 and 16) occurs outside
of the nucleus (although reovirus protein s3, for unknown rea-
sons, has been found in the nucleus [29]), providing no evolu-
tionary selective pressures for distinguishing between RNA
and DNA. Indeed, the reovirus protein l1 binds dsDNA in
addition to dsRNA (12), and the rotavirus protein VP2 binds
dsDNA in addition to RNA (1). Most reovirus and rotavirus
RNA-binding studies have not included DNA as a control,
and therefore it is unclear whether DNA binding is a com-
mon property of reovirus and rotavirus RNA-binding pro-
teins.

Role of m2 RNA-binding activity. Reovirus cores synthesize
positive-sense ssRNA from the enclosed dsRNA template (14),
and cryoelectron microscopy suggests that m2 lies adjacent to
the viral polymerase l3 and the guanylyltransferase l2 in these
cores (9). In addition, genetic evidence has implicated the M1
gene, which encodes m2, in both positive- and negative-strand
RNA synthesis (6, 18, 28). Finally, recent genetic evidence
associates m2 with viral core NTPase activity (15). Together,
the data suggest m2 is part of a heteromeric complex involved
in both positive- and negative-strand RNA synthesis, and fu-
ture studies will address possible enzymatic roles for m2 in this
process.
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